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Abstract 
The consumption of fossil fuels accelerates and accentuates the formation and development of the climate 
change phenomenon. Understanding the energy demand in the early-stage design could lead to more 
energy savings. There are several methods for predicting buildings energy demand and they differ overall 
in terms of prediction quality. the multicollinearity of variables, linearity, and other conditions limit the 
predictive quality of standard models such as linear regression modeling.  This paper is interested in 
developing an energy demand prediction tool based on artificial neural network modeling ANN to test its 
limitations and its predictive quality. For this purpose, and based on the scientific literature, a panel of 
parameters often used by architects at the time of architectural design was selected, which are, the thermal 
resistance of the external walls, the type, and rate of glazing, the orientation, the shading devices the set 
point cooling PMV and natural ventilation rate schedule. A campaign of 600 dynamic thermal simulations 
is then run under energy plus using the Latin Hypercube Sampling (LHS) approach. The best ANN model 
obtained after testing several activating functions gave a prediction potential of over 99.7%. The model also 
ranks each parameter according to its importance in the equation identifying the energy demand. It can 
therefore be assumed that the artificial neural network technique is effective and the ANN outperforms the 
other prediction methods. 
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1. Introduction 
Climate change is one of the most important phenomena in human history. The risks that scientists have been 
predicting since the middle of the last century are known, and some are being experienced at relatively accelerated 
rates: rising temperatures, rising sea levels, melting Arctic and Antarctic ice and atmospheric pollution (Hassan et al: 
2019). The consumption of fossil fuels and ever-increasing standards of living are singled out as the main factors 
accelerating climate change (Zhao et al: 2012). To combat climate change, several COPs have been organized in 
the hope of finding ways to make a collective commitment. Primarily, energy efficiency and the gradual introduction 
of renewable energies are the two main courses of action for reducing fossil fuel consumption and the resulting 
pollution (Boukarta: 2018; Ye et al: 2021). In this vein, being able to predict energy demand and classify buildings in 
terms of their potential for reducing energy demand is a key action insofar as it enables decision-makers to take 
concrete measures to reduce energy demand and operational CO2 emissions (Bourdeau et al: 2019). The residential 
sector consumes more than 40% of final energy worldwide (Rogers: 2008) and more than 46% in Algeria (Aprue: 
2021). In this context, predicting energy demand is an important step, as it enables us to determine the factors that 
generate energy consumption and to propose concrete solutions aimed at optimizing energy demand. The energy 
required for heating and cooling is the two main needs that generate energy consumption (Mcquiston et al: 2004). 
Some countries, such as the Nordic countries, are mainly geared towards heating, while others, such as Algeria, 
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with over 80% of its surface area express the need for air conditioning rather than heating (Ghedamsi, 2016). 
According to Baker and Steemers (2003), the parameters controlling heating and cooling requirements are linked to 
four main factors: the role of the occupant, building characteristics, HVAC systems and the environment. Predicting 
energy demand can be summed up as the equation that consists of finding the impact of each register and parameter 
on the energy demand of buildings to be able to act to reduce the resulting energy demand.  The control parameters 
mentioned above interact in a complex way and with linear or non-linear trends, which makes the study of energy 
demand prediction complex (Yuanjin et al: 2022). In this line, the development of energy demand prediction models 
has become the main issue addressed by several authors (Boukarta: 2021, Dogan et al: 2017, Saffari et al: 2017). 
The present paper would like to test the reliability as well as the predictive power of modelling by an artificial neural 
network in an arid climate zone. To do this, we are faced with several questions:  what is artificial neural network 
modelling? how could we apply this approach? what are its validation hypotheses? and what would be its potential 
for predicting energy demand in comparison with other modelling approaches? 
 
2. Literature review and research gap 
A review of the scientific literature dealing with the issue of predicting energy demand has enabled us to 
identify two main approaches (Boukarta and Berezowska: 2017): (a) the first is known as historicist and is 
based mainly on a broad database including both energy demand by consumption sector and potential 
parameters that may explain energy demand. The authors' interest in this approach lies in the fact that it 
makes it possible to reduce the gap in the prediction of energy demand because it is based on real energy 
consumption data. On the other hand, the limitations of this approach can be summed up in two points: the 
large time budget required to characterize the buildings and the impossibility of introducing the impact of new 
technologies on energy demand. (b) The engineering approach is based on calculation algorithms that can 
predict energy demand with relatively good prediction degrees, depending on the parameters applied. 
According to Dall’O et al (2012), Bartiaux et al (2003), Lucas et al (2009), energy simulation tools can cause 
a gap between predicted and simulated energy demand ranging from 50 to 200%. To reduce the efficiency 
gap between the simulated and the actual, some authors use calibration to reduce the margin of error to below 
5 to 15%, according to ASHRAE guidelines, depending on the quality of the energy data obtained (hourly or 
monthly) (Ashrae: 2014). 
The second point to understand relates to the control parameters explaining the energy demand. According 
to Baker and Steemers et al (2003), it seems that energy demand is subject to variation according to 4 possible 
registers: (i) parameters linked to the occupant. The occupant's socio-economic and physiological 
characteristics can cause energy demand to vary by 50 to 200% (Dall’O et al: 2012). This first parameter is 
the primary uncertainty factor explaining the difference in prediction between the simulated and the predicted 
values. The use of these parameters requires extensive fieldwork to collect energy consumption data (Elena 
et al: 2010). (ii) Parameters relating to the design of the building. This second set of parameters is the most 
widely studied in the scientific literature. The most common parameters are related to the shape of the building, 
expressed in terms of compactness (Boyuer: 2009), and to the building envelope, such as the thermal 
resistance of external walls and floors, and the rate and type of glazing (Kaoula et al: 2021, Semahi et al: 
2019, Boukarta: 2021). (iii) Parameters related to the urban context. This range of parameters includes firstly 
the climatic floor in which the building is located, followed by the spatial configuration which could generate a 
microclimate and thus influence the energy demand of the building in question (Bozzonet: 2005, Kitous: 2013). 
(iv) and finally, the control parameters linked to (operational systems) such as the heating, air conditioning or 
even lighting system (Manoj et al: 2013). Some authors have even introduced this control parameter with a 
historicist approach (Elena et al: 2010). One of the limitations of prediction models is that they introduce 
parameters that are difficult to adjust in practice, such as incident solar radiation, which architects will not be 
able to introduce into their studies. 
The third point to understand revolves around the choice of sampling method. Sampling methods include 
(Kaoula and Abouchair: 2019): (i) Monte-Carlo sampling, which is based on pseudo-random sequences and 
is recommended for problems where the space does not exceed 100,000 combinations; (ii) Sobol and Halton 
sampling, which are so-called quasi-Monte-Carlo methods based on the use of sequences with low 
discrepancy. The use of these methods provides a better representation of the space of possible 
combinations. See Figure 1. 
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Figure 1. Difference between sampling methods (Kaoula et Bouchair: 2019). 

 
(iii) Latin Hypercube Sampling (LHS) is a very efficient multi-dimensional sampling method. As a general 
rule, a sample size of 10 times the number of design variables will be sufficient for the mean of the 
combinations to be modelled accurately, whereas other sampling methods require a minimum of 15 times 
the number of variables. The difference between the LHS and Monte Carlo methods lies in the fact that the 
Monte Carlo method involves generating samples for one variable using a simple random sampling method, 
while the second method, Latin Hypercube, generates random samples that occur in equal probability 
intervals with a normal distribution for each range. 
In this paper we will use the engineering method based on dynamic thermal simulations and the choice of 
control parameters relating to the building and climatic conditions. We have chosen the parameters that 
architects tend to use during the sketch phase, and the sampling method is the LHS because it provides 
the best representation of the parameters. 
3. Methodology 
Artificial neural network modelling is starting to take up a significant part of research recently, as it avoids 
the linearity problems that regression modelling is limited to. The multilayer perceptron is the best known 
and most frequently used type of neural network (Popescu et al: 2009). The architecture of an ANN model 
is made up of several layers, the layers that are not directly connected to the environment are called 
"hidden". An input layer, known as the autonomous layer, which is used only to transmit input signals to 
higher layers. Finally, an output layer, which is used to obtain the output data after processing. Depending 
on the direction of processing, there are two possible models, a feed-forward model which considers a 
single direction from input to output, directly and without loops, as seen in Figure 2. There is also a second 
model, called Feed-back, which allows signals to be sent in both directions (idem). 

 
Figure 2. Feed-Forward ANN model. Escandóna et al (2019). 

 
To pass data from input to output, the data is processed using activation functions which can take different forms, 
such as tangent, sigmoid, identity function, etc. The data must undergo an initial learning stage, which generally 
represents the processing of 70% of the total sample, and the remaining 30% will be used to test and validate the 
results obtained from the model. 
In this paper we will use the Feed-forward method to predict the energy demand of a residential building. To do this, 
we have organised the method around 5 steps. See Figure 3: 
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Figure 3. The method adopted for the application of ANN modelling.  

 
The first step was to obtain climate data for the city of Biskra covering the period 2007-2021. We then analysed the 
weather data to identify the strategies needed to limit energy demand, based on the Szokolay diagram using Climate 
Consultant software version 6.0. The climatic analysis enabled us to realise the importance of cooling in the energy 
equation for the city of Biskra. This led us to consider only the strategies linked to air conditioning, as heating only 
represents 8.1% of the energy demand, unlike air conditioning, which represents 13.7%, plus the 18.9% potentially 
achievable with shading techniques, and the 22% that can come from evaporative cooling, and finally 28.2% from 
thermal mass. See Figure 4. 
 

 
Figure 4. Bioclimatic analysis of the city of Biskra.
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Based on the psychometric diagram presented above, the chosen control parameters are organised according to a 
variation that always considers a maximum, minimum and average value. The parameters considered in this study 
are often used by architects in the sketch phase of their architectural projects, without knowing the importance of 
their impact on energy demand, and even less the energy demand obtained from the different combinations. Also, 
the choice of values for each variable is thought out in such a way that the variables chosen cover the values that 
actually exist. In other words, each variable is parameterised by three values, minimum, average and maximum. The 
table below shows the values set for each parameter. 
 

Table 1:  Parameters chosen for the study and their range of variation.  

Variable Range of variation 

Window to wall ratio 10-20-30-40-50-60 

Glazing type simple, Double clear, double Low Emissivity 

Cooling set PMV -0.5, -1, -1.5, -2 

Orientation (0 to 315, 45° step) 

External wall ununsulated, conventional, thermal mass, unsulated 

Shading device no shading, 0,5 overhang, 0,5 and 1m louvre 

Nat venilationt schedule Nat vent schedule for 25°, 30 and 35° 

 
At the end of this first stage, we chose a generic dwelling consisting of two bedrooms, a living room, a kitchen, a 
bathroom and a WC, and a balcony. This architecture is widespread in Algeria and represents the typical spatial 
organisation of a dwelling. See Figure 5. 
 

 
Figure 5: the generic model of the chosen home.  

 
The second step consists of applying the simulation protocol described in Table 1 above to the generic housing 
model obtained. The total number of simulations required to launch the simulation campaign is equal to 10 times 
the number of variables, i.e., 320 simulations (32*10) using the Latin hypercube sampling method. To make the 
results more accurate, we ran 600 simulations combining the different parametric variations. Using 
(DesignBuilder) software running with Energy Plus as the calculation engine, we ran the 600 simulations to obtain 
the energy demand required for air conditioning, operational CO2, hours of discomfort according to the standard 
55 adaptive comfort model (0.5 Clo and 1.1 Met) and life-cycle analysis. In this paper we have only considered 
the energy demand for air conditioning. 
The third step is to organize the results obtained as a database in the SPSS software in order to be able to 
launch our neural network modelling. The Table 2, below shows some of the results obtained and the coding 
of the variables. 
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Table 2:  Parameters chosen for the study and their range of variation.  

 
The fourth step is to run the ANN model in order to obtain a reliable prediction model. The model is based on a 
progressive architecture in which the activation functions are varied, and each time we estimate the values of the 
relative error ER and the sum of squares errors SSE. See Figure 6. 

 
Figure 6. variation in the model's activation functions.   

 
Once we had decided on the best configurations for the activation functions, we varied the number of hidden 
units from 1 to 20 to obtain the best possible prediction model. Finally, and in the fifth step, a ranking of the 
parameters according to their importance will be presented according to the obtained best model. 
 
4. RESULTS AND DISCUSSION 
4.1 Choosing the best activation functions 
By applying the modelling protocol described above we obtained the most stable and accurate model with the 
Tangent-Indentity function as the best activation function. See Figure 7. 
 

 
Figure 7. variation in SSE and RE as a function of activation functions.  
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Once the activation functions had been chosen, we proceeded to identify the number of hidden units with which 
the model has the best prediction potential. The modelling results are obtained with a variation from 1 to 20 
hidden units and 13 is considered the best number of hidden units. See Figure 8. 

 
Figure 8. SSE and RE values as a function of the number of hidden units.  

Once the activation functions and the number of hidden units have been determined, we have a remarkably 
accurate prediction model, with an R² of 0.997. The QQ diagram and the correlation between the values predicted 
by the model and those obtained by simulations confirm the predictive power of the model obtained. See Figure 
9. 

 

 
Figure 9. QQ plot and predicted Vs Simulated correlation.  

     
4.2 Importance of parameters 

With a high prediction rate, the importance of the parameters controlling energy demand for air conditioning can 
be established. At the top of the list is the thermal resistance of the building materials, with over 27%. Insulation 
and thermal mass allow better control of air temperature, both during the day and at night. In second place is the 
glazing ratio at 25.60%, and the best glazing ratio for reducing energy demand for air conditioning is 10%. The 
thermal quality of the glazing also helps to reduce energy consumption by 18.80%, and the best glazing is double 
glazing with a low-emissivity coating. In fourth place is orientation, which can vary energy demand by 15.20%. 
Preferred orientations are those that reduce solar radiation. In fifth place, we find shading devices with 11.9%, 
whereas Climate Consultant predicted 18.8%. And the best device is the Louvre type with a depth of 0.5m. In last 
position, sixth and seventh, we find cooling setpoint Predicted Mean Vote PMV and natural ventilation organized 
according to the outside temperature of 25-30 and 35°C with an impact of 5 and 4% respectively. These low 
impact values are linked to the high temperature during the summer season, which reduced the periods of natural 
ventilation. 

    5. Conclusion 
This study explores the predictive potential of artificial neural network modeling based on the generic design of a 
dwelling in the arid climate of the city of Biskra. For this purpose, the cooling energy demand is predicted, taking 
into account its dependence on various design parameters, using an MLP neural network. 600 simulation datasets 
are created by varying the design parameters, external wall, glazing type, window/wall ratio, natural ventilation 
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rate, cooling PMV set point and orientation. The optimal number of neurons in the hidden layer is first determined 
using this dataset for training and testing. The MLP network with a hidden layer of 13 neurons performs well with 
a sum of squares error and relative error of 0.26 kWh and 0.0015 respectively. Based on these results, it can 
therefore be said that this model can be used to predict cooling energy demand with a high degree of accuracy. 
Also, it can therefore be assumed that the artificial neural network technique is effective and the ANN outperforms 
the other prediction methods like regression models. The most important design variables explaining the cooling 
energy demand are the external wall (27.60%), the WWR (25.60%), the type of glazing (18.80%), the building 
orientation (15.20%), the shading devices (11.90%) and finally, with a small effect, the cooling set point PMV 
(0.5%) and the natural ventilation rate (0.4%).  
The results obtained can be generalized to the whole arid zone and can serve as a basis for architects, in the 
design stage, to design housing with a lesser impact of each parameter on energy demand. As a possible 
extension of the present study, we are thinking of applying this method to the post-occupancy stage. To do this, 
it will be necessary to calibrate the climatic data and the actual energy consumption to limit the differences in 
terms of prediction between the real and the simulated energy demand. 
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