Towards Salutogenic and Sustainable Urban Environments: A Heat Vulnerability Assessment of Lusaka City through Environmental Exposure

Authors

DOI:

https://doi.org/10.38027/jsalutogenic_vol4no1_1

Keywords:

heat vulnerability index, heat exposure, land cover, land surface temperature, heat exposure mitigation

Abstract

Assessing vulnerability to extreme heat is paramount in the face of escalating climate change impacts. Recognizing the pressing need to understand the urban vulnerabilities of Lusaka City to rising temperatures, this study exclusively targets environmental exposure dynamics while omitting considerations of adaptive capacity and sensitivity. Leveraging Landsat 8 imagery, the study uses Heat Vulnerability Indices (HVI) to quantify the contributions of land surface temperatures, impervious surfaces, vegetation, and bare land to heat vulnerability. The findings reveal that over 60% of neighbourhoods are highly vulnerable, with maps highlighting significant spatial disparities in susceptibility to extreme heat, underscoring the need for localised assessments. Affluent, vegetated neighbourhoods like Kabulonga and Tukunka exhibit lower vulnerability due to sparse built-up areas and extensive greenery. In contrast, unplanned settlements such as Chibolya and Chainda, along with the CBD, show higher vulnerability due to dense built-up areas and minimal vegetation. This study provides critical insights for evidence-based policy formulation and resource allocation, advocating for interventions like green infrastructure and reduced density in built-up areas to foster more resilient and sustainable urban environments.

Downloads

Download data is not yet available.

References

Abrar, R., Sarkar, S. K., Nishtha, K. T., Talukdar, S., Shahfahad, Rahman, A., Islam, A. R. M. T., & Mosavi, A. (2022). Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area. Sustainability, 14(9), 4945. https://doi.org/10.3390/su14094945 DOI: https://doi.org/10.3390/su14094945

Achouri, H., Djaghrouri, D., & Benabbas, M. (2024). Factors Affecting Microclimate and Thermal Comfort in Outdoor Spaces: A Literature Review. Journal of Salutogenic Architecture, 3(1), 48–63. https://doi.org/10.38027/jsalutogenic_vol3no1_5 DOI: https://doi.org/10.38027/jsalutogenic_vol3no1_5

Bao, J., Li, X., & Yu, C. (2015). The Construction and Validation of the Heat Vulnerability Index, a Review. International Journal of Environmental Research and Public Health, 12(7), 7220–7234. https://doi.org/10.3390/ijerph120707220 DOI: https://doi.org/10.3390/ijerph120707220

Bappa, S. A., Malaker, T., Mia, Md. R., & Islam, M. D. (2022). Spatio-temporal variation of land use and land cover changes and their impact on land surface temperature: A case of Kutupalong Refugee Camp, Bangladesh. Heliyon, 8(9), e10449. https://doi.org/10.1016/j.heliyon.2022.e10449 DOI: https://doi.org/10.1016/j.heliyon.2022.e10449

Barriuso, F., & Urbano, B. (2021). Green Roofs and Walls Design Intended to Mitigate Climate Change in Urban Areas across All Continents. Sustainability, 13(4), 2245. https://doi.org/10.3390/su13042245 DOI: https://doi.org/10.3390/su13042245

Barron, S., & Rugel, E. J. (2023). Tolerant greenspaces: Designing urban nature-based solutions that foster social ties and support mental health among young adults. Environmental Science & Policy, 139, 1–10. https://doi.org/10.1016/j.envsci.2022.10.005 DOI: https://doi.org/10.1016/j.envsci.2022.10.005

Bélanger, D., Abdous, B., Gosselin, P., & Valois, P. (2015). An adaptation index to high summer heat associated with adverse health impacts in deprived neighborhoods. Climatic Change, 132(2), 279–293. https://doi.org/10.1007/s10584-015-1420-4 DOI: https://doi.org/10.1007/s10584-015-1420-4

Bell, J. E., Brown, C. L., Conlon, K., Herring, S., Kunkel, K. E., Lawrimore, J., Luber, G., Schreck, C., Smith, A., & Uejio, C. (2018). Changes in extreme events and the potential impacts on human health. Journal of the Air & Waste Management Association, 68(4), 265–287. https://doi.org/10.1080/10962247.2017.1401017 DOI: https://doi.org/10.1080/10962247.2017.1401017

Conlon, K. C., Mallen, E., Gronlund, C. J., Berrocal, V. J., Larsen, L., & O’Neill, M. S. (2020). Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis. Environmental Health Perspectives, 128(9), 097001. https://doi.org/10.1289/EHP4030 DOI: https://doi.org/10.1289/EHP4030

Cresswell, K. (2023). A Florida urban heat risk index: Assessing weighting and aggregation approaches. Urban Climate, 51, 101646. https://doi.org/10.1016/j.uclim.2023.101646 DOI: https://doi.org/10.1016/j.uclim.2023.101646

Fu, J., Dupre, K., Tavares, S., King, D., & Banhalmi-Zakar, Z. (2022). Optimized greenery configuration to mitigate urban heat: A decade systematic review. Frontiers of Architectural Research, 11(3), 466–491. https://doi.org/10.1016/j.foar.2021.12.005 DOI: https://doi.org/10.1016/j.foar.2021.12.005

Ganoe, M., Roslida, J., & Sihotang, T. (2023). The Impact of Volunteerism on Community Resilience in Disaster Management. Jurnal Ilmu Pendidikan Dan Humaniora, 12(3), 199–213. https://doi.org/10.35335/jiph.v12i3.11 DOI: https://doi.org/10.35335/jiph.v12i3.11

Hanzl, M., & Rembeza, M. (2022). Greenery and Urban Form vs. Health of Residents: Evaluation of Modernist Housing in Lodz and Gdansk. Urban Planning, 7(4). https://doi.org/10.17645/up.v7i4.5831 DOI: https://doi.org/10.17645/up.v7i4.5831

Happy Mpezeni, & Shi, Y. (2025). Enhancing Urban Resilience to Extreme Heat in Zambia: Strategies and Interventions in Infrastructure Planning. International Journal of Social Sciences and Public Administration, 6(1), 203–224. https://doi.org/10.62051/ijsspa.v6n1.25 DOI: https://doi.org/10.62051/ijsspa.v6n1.25

Hayes, A., Jandaghian, Z., Lacasse, M., Gaur, A., Lu, H., Laouadi, A., Ge, H., & Wang, L. (2022). Nature-Based Solutions (NBSs) to Mitigate Urban Heat Island (UHI) Effects in Canadian Cities. Buildings, 12(7), 925. https://doi.org/10.3390/buildings12070925 DOI: https://doi.org/10.3390/buildings12070925

He, B.-J., Zhao, D., Dong, X., Xiong, K., Feng, C., Qi, Q., Darko, A., Sharifi, A., & Pathak, M. (2022). Perception, physiological and psychological impacts, adaptive awareness and knowledge, and climate justice under urban heat: A study in extremely hot-humid Chongqing, China. Sustainable Cities and Society, 79, 103685. https://doi.org/10.1016/j.scs.2022.103685 DOI: https://doi.org/10.1016/j.scs.2022.103685

Huong, N. T. L., Yao, S., & Fahad, S. (2019). Assessing household livelihood vulnerability to climate change: The case of Northwest Vietnam. Human and Ecological Risk Assessment: An International Journal, 25(5), 1157–1175. https://doi.org/10.1080/10807039.2018.1460801 DOI: https://doi.org/10.1080/10807039.2018.1460801

Inostroza, L., Palme, M., & De La Barrera, F. (2016). A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile. PLOS ONE, 11(9), e0162464. https://doi.org/10.1371/journal.pone.0162464 DOI: https://doi.org/10.1371/journal.pone.0162464

Johnson, D. P., Stanforth, A., Lulla, V., & Luber, G. (2012). Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Applied Geography, 35(1–2), 23–31. https://doi.org/10.1016/j.apgeog.2012.04.006 DOI: https://doi.org/10.1016/j.apgeog.2012.04.006

Karanja, J., Wanyama, D., & Kiage, L. (2022). Weighting mechanics and the spatial pattern of composite metrics of heat vulnerability in Atlanta, Georgia, USA. Science of The Total Environment, 812, 151432. https://doi.org/10.1016/j.scitotenv.2021.151432 DOI: https://doi.org/10.1016/j.scitotenv.2021.151432

Kotharkar, R., & Ghosh, A. (2022). Progress in extreme heat management and warning systems: A systematic review of heat-health action plans (1995-2020). Sustainable Cities and Society, 76, 103487. https://doi.org/10.1016/j.scs.2021.103487 DOI: https://doi.org/10.1016/j.scs.2021.103487

Latif, S. Z. A., Salleh, S. A., Salim, P. M., Saraf, N. M., Halim, M. A., Idris, A. N., Mustaha, E., & Pintor, L. (2023). The Exploratory Study of Normalized Indicator of Heat Vulnerability Index (HVI) By Using Functional Relationship. IOP Conference Series: Earth and Environmental Science, 1240(1), 012009. https://doi.org/10.1088/1755-1315/1240/1/012009 DOI: https://doi.org/10.1088/1755-1315/1240/1/012009

Marcotullio, P. J., Keßler, C., & Fekete, B. M. (2022). Global urban exposure projections to extreme heatwaves. Frontiers in Built Environment, 8, 947496. https://doi.org/10.3389/fbuil.2022.947496 DOI: https://doi.org/10.3389/fbuil.2022.947496

Mohan, D. (2023). Enhancing capacity building initiatives at sub-national level for supporting climate change adaptation. Climate and Development, 15(9), 808–815. https://doi.org/10.1080/17565529.2022.2163845 DOI: https://doi.org/10.1080/17565529.2022.2163845

Niu, Y., Li, Z., Gao, Y., Liu, X., Xu, L., Vardoulakis, S., Yue, Y., Wang, J., & Liu, Q. (2021). A Systematic Review of the Development and Validation of the Heat Vulnerability Index: Major Factors, Methods, and Spatial Units. Current Climate Change Reports, 7(3), 87–97. https://doi.org/10.1007/s40641-021-00173-3 DOI: https://doi.org/10.1007/s40641-021-00173-3

Nyimbili, P. H., Chalwe, N., Kawimbe, B. J., Lubilo, F., Mwanaumo, E. M., Thwala, W. D., & Erden, T. (2023). Quantifying the Effect of the Built Environment on Surface Runoff using GIS and Remote Sensing: A Case Study of Ibex Hill-Lusaka. Proceedings of the International Conference of Contemporary Affairs in Architecture and Urbanism-ICCAUA, 6(1), 506–518. https://doi.org/10.38027/iccaua2023en0327 DOI: https://doi.org/10.38027/iccaua2023en0327

Oli, D., Gyawali, B., Neupane, B., & Oshikoya, S. (2025). Assessment of land use land cover change and its impact on variations of land surface temperature in Atlanta, USA. Environmental and Sustainability Indicators, 26, 100712. https://doi.org/10.1016/j.indic.2025.100712 DOI: https://doi.org/10.1016/j.indic.2025.100712

Qin, Y., Ghalambaz, S., Sheremet, M., Baro, M., & Ghalambaz, M. (2024). Deciphering Urban Heat Island Mitigation: A Comprehensive Analysis of Application Categories and Research Trends. Sustainable Cities and Society, 101, 105081. https://doi.org/10.1016/j.scs.2023.105081 DOI: https://doi.org/10.1016/j.scs.2023.105081

Reid, C. E., Mann, J. K., Alfasso, R., English, P. B., King, G. C., Lincoln, R. A., Margolis, H. G., Rubado, D. J., Sabato, J. E., West, N. L., Woods, B., Navarro, K. M., & Balmes, J. R. (2012). Evaluation of a Heat Vulnerability Index on Abnormally Hot Days: An Environmental Public Health Tracking Study. Environmental Health Perspectives, 120(5), 715–720. https://doi.org/10.1289/ehp.1103766 DOI: https://doi.org/10.1289/ehp.1103766

Rivero-Villar, A., & Vieyra Medrano, A. (2021). Governance for urban resilience in popular settlements in developing countries: A case-study review. Climate and Development, 14(3), 208–221. https://doi.org/10.1080/17565529.2021.1906203 DOI: https://doi.org/10.1080/17565529.2021.1906203

Sahani, J., Kumar, P., & Debele, S. E. (2024). Assessing demographic and socioeconomic susceptibilities to heatwaves in the Southeastern United Kingdom. Sustainable Cities and Society, 117, 105958. https://doi.org/10.1016/j.scs.2024.105958 DOI: https://doi.org/10.1016/j.scs.2024.105958

Salata, F., Golasi, I., Petitti, D., De Lieto Vollaro, E., Coppi, M., & De Lieto Vollaro, A. (2017). Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustainable Cities and Society, 30, 79–96. https://doi.org/10.1016/j.scs.2017.01.006 DOI: https://doi.org/10.1016/j.scs.2017.01.006

Sędzicki, D., Cudzik, J., & Nyka, L. (2023). Computer-Aided Greenery Design—Prototype Green Structure Improving Human Health in Urban Ecosystem. International Journal of Environmental Research and Public Health, 20(2), 1198. https://doi.org/10.3390/ijerph20021198 DOI: https://doi.org/10.3390/ijerph20021198

Semenzato, P., & Bortolini, L. (2023). Urban Heat Island Mitigation and Urban Green Spaces: Testing a Model in the City of Padova (Italy). Land, 12(2), 476. https://doi.org/10.3390/land12020476 DOI: https://doi.org/10.3390/land12020476

Wang, C., Wang, Z.-H., Kaloush, K. E., & Shacat, J. (2021). Cool pavements for urban heat island mitigation: A synthetic review. Renewable and Sustainable Energy Reviews, 146, 111171. https://doi.org/10.1016/j.rser.2021.111171 DOI: https://doi.org/10.1016/j.rser.2021.111171

Zhang, Y., Li, Q., Ge, Y., Du, X., & Wang, H. (2022). Growing prevalence of heat over cold extremes with overall milder extremes and multiple successive events. Communications Earth & Environment, 3(1), 73. https://doi.org/10.1038/s43247-022-00404-x DOI: https://doi.org/10.1038/s43247-022-00404-x

Downloads

Published

2025-08-13

How to Cite

Chibinga, J., Nyimbili, P. H., Sakala, M., Banda, F., Mwanaumo, E. M. ., & Thwala, W. D. . (2025). Towards Salutogenic and Sustainable Urban Environments: A Heat Vulnerability Assessment of Lusaka City through Environmental Exposure. Journal of Salutogenic Architecture, 4(1), 1-18. https://doi.org/10.38027/jsalutogenic_vol4no1_1

Share

Most read articles by the same author(s)

1 2 3 4 5 > >>